skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Xian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We implement a nudging module into the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) to identify effective techniques for incorporating global‐scale tides and medium‐scale gravity waves (GWs) that induce ionospheric variability. Nudging the full fields of basic state variables minimizes contamination from spectral aliasing and mode coupling, ensuring the most accurate reproduction of each tidal component. In contrast, nudging solely diurnal tides has substantial spectral leakage into semidiurnal tides, leading to underestimations of their own amplitudes and day‐to‐day variabilities (DTDVs). Nudging both diurnal and semidiurnal tides mitigates such underestimations, establishing a minimal requirement for reproducing tidal dynamics and ionospheric DTDVs. Lower boundary forcing (LBF) causes significant deviations of tidal amplitudes and DTDVs near the boundary, but only a ∼10% underestimation above it. The DTDV of vertical ion drift gradually increases with more wave components incorporated and shows a ∼10% underestimation with LBF. Constraining geopotential height (Z*) is critical in TIEGCM to properly add GWs at lower levels. Model runs withZ* constrained exhibit reduced sensitivity to nudging levels: one‐level nudging and LBF runs show 20%–30% underestimations of TID magnitudes compared to a four‐scale‐height nudging run. Conversely, whenZ* is unavailable and onlyU,V,Tare constrained, one‐level nudging and LBF lead to 80%–90% underestimations of TIDs, with LBF entirely missing wave features. Therefore, multi‐level nudging, especially withZ* unconstrained, is recommended to incorporate GWs. Overall, nudging provides a powerful tool to realistically incorporate observed or simulated waves across medium to global scales into ionosphere‐thermosphere models, offering a data‐driven perspective of variability for lower boundary conditions. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract We use the TIEGCM‐NG nudged by MAGIC gravity waves to study the impacts of a severe thunderstorm system, with a hundred tornado touchdowns, on the ionospheric and thermospheric disturbances. The generated waves induce a distinct concentric ring pattern on GNSS TIDs with horizontal scales of 150–400 km and phase speeds of 150–300 m/s, which is well simulated by the model. The waves show substantial vertical evolution in period, initially dominated by 0.5 hr at 200 km, shifting to 0.25 hr and with more higher‐frequency waves appearing at higher altitudes (∼400 km). The TADs reach amplitudes of 100 m/s, 60 m/s, 80 K, and 10% in horizontal winds, vertical wind, temperature, and relative neutral density, respectively. Significantly perturbations in electron density cause dramatic changes in its nighttime structure around 200 km and near the EIA crest. The concentric TIDs are also simulated in ion drifts and mapped from the Tornado region to the conjugate hemisphere likely due to neutral wind‐induced electric field perturbations. The waves manage to impact the ionosphere at altitudes of ICON and COSMIC‐2, which pass through the region of interest on a total of 8 separate orbits. In situ ion density observations from these spacecrafts reveal periodic fluctuations that frequently show good agreement with the TIEGCM‐NG simulation. The O+fraction observations from ICON indicate that the density fluctuations are the result of vertical transport of the ions in this region, which could result from either direct forcing by neutral winds or electrodynamic coupling. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract The 12‐year continuous observation of gravity wave momentum fluxes (GWMFs) estimated by the Mohe meteor radar (53.5°N, 122.3°E) revealed prominent intraseasonal variability around the extratropical mesopause (82–94 km) during boreal winters. Composite analysis of the December‒January‒February (DJF) season according to the Madden‒Julian Oscillation (MJO) phases revealed that the zonal GWMFs notably increased in MJO Phase 4 (P4) by ∼2–4 m2/s2, and a Monte Carlo test was designed to examine the statistical significance. The response in zonal winds lags behind the GWMF response by two MJO phases (i.e., 1/2π), indicating a “force‒response” interaction between them. Additionally, time‐lagged composites revealed that strengthened westward GWMFs occurred ∼25–35 days after MJO P4, coincident with the MJO impact on the zonal winds in the stratosphere. The analysis results also suggested that the mechanism of MJO by which the MJO influences the stratospheric circulation might involve poleward propagating effects of stationary planetary waves with zonal wavenumber one. This work emphasizes the importance of GW intraseasonal variability, which impacts tropical sources from the troposphere to the extratropical mesopause. 
    more » « less
    Free, publicly-accessible full text available November 16, 2025
  4. A new version of the US National Science Foundation National Center forAtmospheric Research (NSF NCAR) thermosphere-ionosphere-electrodynamicsgeneral circulation model (TIEGCM) has been developed and released. Thispaper describes the changes and improvements of the new version 3.0since its last major release (2.0) in 2016. These include: 1) increasingthe model resolution in both the horizontal and vertical dimensions, aswell as the ionospheric dynamo solver; 2) upward extension of the modelupper boundary to enable more accurate simulations of the topsideionosphere and neutral density in the lower exosphere; 3) improvedparameterization for thermal electron heating rate; 4) resolvingtransport of minor species N(2D); 5) treating helium as a major species;6) parameterization for additional physical processes, such as SAPS andelectrojet turbulent heating; 7) including parallel ion drag in theneutral momentum equation; 8) nudging of prognostic fields near thelower boundary from external data; 9) modification to the NO reactionrate and auroral heating rate; 10) outputs of diagnostic analysis termsof the equations; 11) new functionalities enabling model simulations ofcertain recurrent phenomena, such as solar flares and eclipse. Wepresent examples of the model validation during a moderate storm andcompare simulation results by turning on/off new functionalities todemonstrate the related new model capabilities. Furthermore, the modelis upgraded to comply with the new computer software environment at NSFNCAR for easy installation and run setup and with new visualizationtools. Finally, the model limitations and future development plans arediscussed. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  5. We quantify the short-term (<30 day) variability of column O/N 2 measured by GOLD from January 2019 to August 2022 for various geomagnetic activity conditions. We find enhanced variabilities at high latitudes during active (Kp ≥ 3.0) times and weak but statistically significant variabilities at low latitudes. For active times, the largest absolute variability of O/N 2 ratio is 0.14 and the largest relative variability is 20.6% at ∼60.0°N in Fall, which are about twice those of quiet times. The variability at higher latitudes can be larger than that of lower latitudes by a factor of 5–8. We further quantify contributions of magnetospheric forcing to O/N 2 variability in the Ionosphere-Thermosphere region by correlating O/N 2 perturbations with Dst. During geomagnetic active times, positive correlations as large as +0.66 and negative correlations as large as −0.65 are found at high and low latitudes, respectively, indicative of storm-induced O and N 2 upwelling at high latitudes and down welling at low latitudes. During quiet times, correlations between O/N 2 perturbations and Dst become insignificant at all latitudes, implying a more substantial contribution from below. O/N 2 variabilities maximize in Fall and decrease towards Summer, while correlations maximize in Spring/Summer and decrease in Winter/Spring, which may be related to seasonal variations of geomagnetic activity and mean circulation. 
    more » « less